
 Abstract—In  this  paper  we  present  a  method  for  the
spatial  analysis  of  complex  cellular  systems  based  on  a
multiscale study of neighborhood relationships. A function to
measure  those  relationships,  M,  is  introduced.  The  refined
Relative Neighborhood Graph is then presented as a method to
establish  vicinity  relationships  within  layered  cellular
structures,  and  particularized  to  epithelial  cell  nuclei  in  the
mammary gland.  Finally,  the method  is  illustrated  with two
examples  that  show  interactions  within  one  population  of
epithelial cells and between two different populations.
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I.  INTRODUCTION

As  it  is  already  accepted  in  our  current  systemic
approach  to  biology,  the  development,  function  and
regeneration  of  tissues,  both  normal  and  abnormal,  is
determined by the location and distribution of various cell
types and phenotypes within the tissue [1, 2]. For example,
in  mammary  gland  development,  cap  cells  with  invasive
properties  line  the  surface  of  the  growing  ducts,  which
extend through the fat  pad  that  embeds the gland.  In  the
alveolar units that cap the ducts of a mature gland, secretory
epithelial cells line the lumen of the ducts. After pregnancy,
this mature luminal epithelium secretes milk into the ducts.
Myoepithelial cells are arranged around the ductal tree, as
well  as  around  the  terminal  alveolar  units.  Upon,  the
appropriate  stimulus  they  contract,  thus  forcing  the  milk
through the ducts towards the nipple. Even within a given
cell type or subtype, heterogeneous cellular phenotypes are
required  to  maintain  the  proper  tissue  homeostasis.  Thus,
hormone  receptor  sensitive  ductal  epithelial  cells,
supposedly  responsible  of  cellular  signaling   ,  are
interspersed with hormone receptor negative cells,     which
carry  out the functions  dictated by  the hormone sensitive
ones [3].

Many of these spatial phenomena have been previously
described  in  a  qualitative  way  but,  due  to  the  lack  of
appropriate tools, most of them have not been quantitatively
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studied. For example, the expression and co-localization of
the  estrogen  (ER)  and  the  progesterone  (PR) receptors  in
luminal  epithelial  cells  [4];  the  fact  that  proliferation
markers are not expressed by ER+  cells [5]; or the possible
presence of a niche -a highly organized pattern of different
cell types- around mammary stem cells [6] have never been
assessed from a quantitative, spatial point of view.

In order to address these questions, we have developed
a quantitative spatial analysis tool that we have integrated
into an existing 3D microscopy system [7]. In this paper we
introduce that tool and show two examples obtained on real
data, thus demonstrating how we will use it to address some
of the questions mentioned above.

II.  METHODOLOGY

A.  Tissue processing
Paraffin-embedded  mammary  gland  tissue  blocks  are

sectioned at 5  µ m, and the sections are immunostained for
the appropriate antigens. A counterstain is used that allows
us to study the morphology of the tissue (e.g.: DAPI). Low
magnification (2.5X) images of the counterstaining of all the
sections are then automatically acquired using a motorized
Zeiss Axioplan I microscope coupled with a monochrome
XilliX  Microimager  CCD  camera.  This  is  done
automatically by scanning the area of the slide occupied by
the  tissue;  correcting  the  microscope  focusing  whenever
necessary;  and  tiling together  all  the  individual  snapshots
into a single image of the entire section.

The next step consists of automatically annotating the
structures  of  interest  (ducts,  tumors,  ...)  in  these  low
magnification images [8]. The annotated structures are then
used  to  create  a  three-dimensional  model  of  the  sample.
With this model we can track the morphology of the tissue
to determine which are the areas where a spatial  analysis
might be more interesting. After selecting these areas, the
system asks the user to place the right fluorescent section(-s)
on the stage,  and high magnification (40X) images of the
immunostaining of the chosen areas are acquired. In these
images nuclei are manually annotated with dots and visually
classified,  forming  a  point  pattern;  they  can  also  be
automatically  segmented  and  quantified  [9].  In  the  later
case,  the  center  of  mass  of  each  nucleus  is  computed  to
obtain a point pattern of nuclei markings.

B.  M function analysis
B.1.  Definitions

Given a set of points {n1, ..., nNc} representing the nuclei
belonging to population C in the study area, we define niCr,
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the  number  of  neighbors  of  nucleus  ni  belonging  to
population  C within  distance  r; nir,  the  total  number  of
neighbors  of  ni  (belonging  to  any  population)  within
distance  r; NC,  the  total  number  of  nuclei  belonging  to
population  C within the area under study; and  N, the total
number of nuclei in that same area.

B.2.  Single-variable analysis
Mammary gland epithelial cells are located at ducts, end

buds and alveolar structures, but never in the surrounding
stromal and fatty tissue. For that reason, we cannot do our
spatial analysis with Ripley's  K function [10],-traditionally
used for this task in other fields-, since it assumes that the
cells can be located anywhere in the image space. Thus, we
now assume a space with constrained nuclear locations. In
this space, the total number of nuclei on an area measures
the  size  of  the  set  of  possible  locations  for  an  epithelial
nucleus in that area: any of those points could be occupied
by a nucleus. Thus, we can measure the density of nuclei
belonging to population C as a ratio of nuclei numbers, and
so, we define [11]:

Mr ,C=
∑
i=1

NC niCr

nir

NC

/
NC

N
1

The numerator of (1) computes the average density of
neighbors belonging to population C within distance r, and
then  compares  that  value  to  a  benchmark:  the  density  of
nuclei  belonging to population  C in the entire study area.
Therefore, clustered patterns of nuclei will have M(r, C) > 1,
with a peak at  the cluster size. On the other hand, regular
patterns will have M(r, C) < 1. Finally, random distributions
will have M(r, C) = 1. In general, we can say that  M(r, C) =
k implies that the density of nuclei belonging to population
C within distance  r is  k times that of the entire area under
study.

To complete the univariate analysis we need to have a
way to establish the significance of our measurements. For
that reason, we run m Monte Carlo simulations of the nuclei
distribution within the area of interest. The simulations are
set  up  by  preserving  the  nuclei  locations  and  randomly
assigning  the  population  each  nucleus  belongs  to.  We
compute the  M  function for each one of these simulations
(Mi(r, C), i = 1, ..., m) and calculate U(r, C) and L(r, C):

 
Ur ,C= max

i=1,... ,m
Mir ,C 2

L r ,C= min
i=1,... ,m

Mir ,C 3

Now we can plot  M(r,  C),  U(r,  C) and L(r,  C) in the same
graph.  Peaks  of  M(r,  C)  above  U(r,  C)  are  evidence  of
significant clustering (with confidence level α  = 1/(m + 1)).
Similarly,  troughs  below  L(r,  C)  represent  significant
regularity  or  dispersion.  Any  nuclei  distribution  with  no
significant peaks or troughs can be considered to be random.

B.3.  Multiple-variable analysis
The  M function  analysis  described  in  the  previous

section can be used to study the distribution of cells within a
given  population,  e.g.  Expressing  or  not  a  given  marker.
However,  most  of  the  problems  introduced  in  section  I
involve two or more cell populations. In order to study this
type of problems, we can modify (1) to get: 

Mr ,C1,C2=
∑
i=1

NC
1 niC2r

nir

NC1

/
NC2

N
4

where  C1 and  C2 are the two populations under study,  NC1

and  NC2  are  the  number  of  nuclei  in  each  one  of  those
populations and  niC2r  is the number of nuclei belonging to
population   C2  within  distance  r of  nucleus  ni (with  ni

belonging to C1). It is easy to see how these equation could
be extended to three or more populations.

Now M values larger than 1 are indicative of attraction
between populations C1 and C2 (a special case of this is co-
localization, i.e., attraction at distance r = 0); values smaller
than  1  indicate  repulsion;  and  M(r,  C1,  C2)  =  1  shows
independence of the spatial distributions of both populations
at  distance  r.  However,  significant values of  M(r,  C1,  C2)
maybe  due  either  to  actual  interactions  between  both
populations or to the patterns of each one of them. For this
reason, we set up our Monte Carlo simulations preserving
the locations of the nuclei belonging to population  C1 and
redistributing  the  location  of  population  C2.  Thus,  we
control for the C1 pattern. The same process is applied to M
(r,  C2,  C1).  Finally,  significant interaction at  distance  r is
only  accepted  if  both  M(r,  C1,  C2)  and  M(r,  C2,  C1) are
significantly different from randomness.

C.  Refined RNG
In  the  previous  section  we  have  used  the  shortest

Euclidean distance to measure how far apart two nuclei are.
However, this is not the best way to represent vicinity. In
fact, the shortest Euclidean distance is some times obtained
by  traversing  luminal  areas,  thus  defining  neighborhood
relationships  that  may have topological  meaning,  but  that
cannot explain the underlying cellular interactions that we
wish  to  measure  with  our  analysis,  since cell-to-cell
signaling  in  the  epithelium  normally  occurs  through
intermediate cells [12]. Therefore, we decided to model our
tissue using a graph where the nodes are the different nuclei,
edges  represent  neighborhood  relationships  and  distances
can  be  measured  as  the  number  of  edges  between  two
nuclei.

We start out by building a Delaunay triangulation using
the nuclei markings as nodes. This provides a preliminary
tessellation  where  we  can  already  measure  distances  as
number of edges. On top of this triangulation we can now
build  a  Relative  Neighborhood  Graph  (RNG).  Here,  we
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preserve an edge if an only if the two nuclei on its sides (ni

and nj) are relatively close [13], that is:

d ni ,n jmax d ni ,nk,d n j ,nk 5

∀k=1,... ,N,k≠i , j
where d(ni, nj) is the length of the edge between ni and nj. In
other words, what this definition states is that an edge in the
Delaunay triangulation is preserved if the nuclei on its sides
are at least as close to each other as they are to any other
nucleus in the graph. With this we obtain the RNG. Finally,
we do a refinement step where we get rid of all the edges
which  are  too  large  and  we  force  connections  between
nuclei  which  are  too  close  (using  the  shortest  Euclidean
distance)  to  not  to  be  neighbors.  Now,  using  Floyd's  or
Dijkstra's algorithms [14], we can easily build a table with
the  shortest  distance  (measured  as  the  number  of  edges)
between each pair of nuclei in the graph.

III.  RESULTS

We ran our spatial  analysis tool on a set of synthetic
images to test for its accuracy at detecting interactions. Then
we went on to do the analysis of real tissue samples. In this
section we describe two different examples. For the first one
the  tissue  was  obtained  from  a  transgenic  mouse
overexpressing  the  HER2 gene,  a  growth  factor  receptor
whose human counterpart is overexpressed in about 30% of
breast  cancers.  Sections  were taken  from this  sample and
immunostained for  HER2 using  diaminobenzidine  (brown
precipitate).  The  nuclei  were  counterstained  with
hematoxylin  (blue).  High  magnification  images of  certain
areas in these sections were acquired, and the nuclei in those
areas  were  manually  annotated.  Fig.  1  shows  the  spatial
analysis  of  the  HER2+ population  in  one  of  those  areas
(inset). Positive nuclei are marked with red dots, negative
ones  are  green.  The  analysis  indicates  the  presence  of
clustering  at  small  distances  around  the  nuclei  (at  2  to  8
nuclei  of  distance  as  measured  by  edges  in  the  refined
RNG), with a peak at distance r = 2. This peak reveals the
presence of clusters of  HER2+ cells with a radius of 2 nuclei
and a density of M = 1.55 (α  = 0.05 ).

For the second example we obtained tissue from a wild
type  mouse  which  had  been  given  a  constant  dose  of
BromodeoxyUridine  (BrdU)  for  two  weeks.  BrdU  is  a
thymidine analog that gets incorporated into the DNA of the
cells  that  undergo  mitosis.  The  tissue  was  sectioned,  and
double immunofluorescence staining was carried out on the
sections.  BrdU  was  detected  using  a  secondary  antibody
labeled with Alexa 568,  a  red fluorochrome,  while Alexa
488  (green)  was  used  to  detect  ER+ cells.  Nuclei  were
counterstained  with  DAPI  (blue).  Once  again,  high
magnification images of some areas were taken, and nuclei
were manually  annotated.  Then, multiple-variable analysis
of the interaction between ER+ and BrdU+ cells was carried
out. Fig. 2 shows one of the analyzed areas, where nuclei

markings have been removed for clarity. The refined RNG
establishing neighborhood relationships is also shown. Fig.
3 contains the results of the analysis (M(r, ER+, BrdU+)) for
this area. The graph for M(r, BrdU+, ER+) is very similar to
the  one  shown  here.  Thus,  there  seems  to  be  repulsion
between both populations at very small scales. Actually, the
peak of this repulsive interaction is at distance  r = 0  (M =
0.15, α  = 0.05), i.e., ER+ and BrdU+ cells do not co-localize
most  of  the  times,  but  do  co-localize  occasionally.  This
result,  whose  intensity  and  extent  we  can  now  quantify
using  the  M  values,  has  previously  been  described
qualitatively in the literature.

IV.  DISSCUSION

Studying  the  function  of  complex  biological  systems
requires the quantitative analysis of heterogeneous cellular
populations located in diverse topological patters. In order
to  do  this  in  a  way  that  provides  consistency  and  high
throughput,  quantitative  tools  for  the  spatial  analysis  of
samples  are  required.  In  this  paper  we  have  presented  a
method that  automatically  provides  a  measurement  of  the
way cells  interact within one population, as well as of the
different types of interaction that might occur between the
different cell populations present in a tissue. Our approach
is based on a multiscale analysis of the number of neighbors
belonging  to  the  population  under  study,  followed  by
comparison  to  a  benchmark,  the  total  density  of  nuclei
within  that  population  in  the  entire  study  area.  Thus,  we
define  the  M function,  which  takes  into  account  the
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Fig. 1: Single variable spatial analysis of HER2+ nuclei.

Fig. 2: ER+ (green) and BrdU+ (red) cells in a duct.



heterogeneous  distribution  of  the  epithelium  within
mammary tissue. This function, -together with the analysis
scheme  where  it  is  embedded-,  allows  for  unsupervised
analysis of large data sets in a reasonable time, since it does
not include any complex calculation. The method provides
comparability  of  concentration  measurements  across
populations;  remains unbiased concerning different scales;
and can be modified depending on the desired significance
level.

In order to define neighborhood in a way that takes into
account the histology of the tissue as well as differences in
cell size/image magnification, we create a refined RNG that
has the nuclei markings as its nodes. The connections in this
graph represent vicinity in a way that faithfully depicts what
nuclei might be directly interacting with each other in the
tissue.

In the near future we are planning on using this tool to
address  several  problems,  including  co-
localization/interaction  studies  of  ER+, PR+ and  HER2+

populations  in  both  wild  type  and  transgenic  mice,  or
characterization of the distribution of label-retaining cells (a
population of cells likely to be enriched for mammary stem
cells)  with  respect  to  other  populations  present  in  the
mammary epithelium, thus trying to unveil the presence of a
niche around stem cells similar to the ones observed in other
organs. Since both of these problems are inherently three-
dimensional, we are currently working on adding one more
dimension  to  our  analysis  scheme.  This  extended
functionality  should  help  us  explore  in  further  detail  the
possible  determinants  of  interaction  both  within  and
between cell populations.

V.  CONCLUSION

In this paper we have presented a method for the spatial
analysis of mammary epithelium. Thus, we have created a
tool to quantitatively measure what previously could only be

qualitatively described. Our multiscale method is consistent,
comparable  across  populations  and  allows  for  automatic,
high-throughput analysis of large data sets. The use of this
approach  to  study  problems  where  interactions  between
cells  are  expected  will  greatly  contribute  to  the  detailed
description of these phenomena.
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Fig. 3: Spatial analysis of the interaction between ER+ and BrdU+

nuclei.
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